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Received 15 May 2001

Abstract

A local characterization of Schwarzschild metrics is made by showing the space-time is locally
a 2 by 2 warped product and admitting a static reference frame on its certain open subsets under
some assumptions on the global analytic structure and stress-energy tensor of the space-time, such
as, assuming the existence of solutions to certain partial differential equations and the existence of
a radiation stress-energy tensor consistent with these solutions on the space-time.
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1. Introduction

Physical observations are made locally and hence they are used as a basis to confirm or
raise a space-time model. In the presence of no matter, physical observations are mostly
made on certain components of the curvature tensor of the space-time and suited to build
a model. In[6], by putting conditions on certain components of the curvature tensor of
a space-time (which are consistent with physical observations), a local characterization
of Schwarzschild and Reissner solutions are made. In this paper, we follow a completely
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different approach to local characterization of a “static star” by putting conditions on the
global analytic structure of space-time together with some mild assumptions on its Ricci
tensor, in fact on the stress-energy tensor of space-time. That is, we remove the assumptions
on the curvature tensor, especially the ones in[6], and compensate this lack by the analytic
assumptions together with the assumptions on the stress-energy tensor. (A reminiscent
approach to characterize the cosmological time functions is made in[3].)

Intuitively, a “static star” refers to a gravitational field generated by a time independent
non-rotating source. However, throughout this paper, we only consider the gravitational
field exterior to the celestial body of a “static star” with no matter is present, yet an elec-
tromagnetic radiation may be present, and still call that gravitation a “static star”.

In Section 2, we introduce a partial differential equation, called the local Möbius equation.
In fact, the existence of a submersive solution to this equation together with the existence
of a “consistent” radiation stress-energy tensor to this solution, will yield the major local 2
by 2 warped product decomposition of a Schwarzschild space-time inSection 3. Yet, the
existence of a static reference frame is considered to be an essential ingredient of a “static
star” model. We also show the existence of such a reference frame on some open subsets
of space-time by imposing some further conditions on the solution of the local Möbius
equation implicitly, which is, in fact, another partial differential equation on the space-time
as well. However, explicitly it is the condition called weak-affinity in[6]. Throughout this
paper, everything at hand is assumed to be smooth.

2. The local Möbius equation

The Möbius equation was first defined on Riemannian manifolds by Osgood and Stowe
[12]. This equation can also be defined on semi-Riemannian manifolds as follows: let (M,
g) be ann-dimensional semi-Riemannian manifold andf:(M, g) → R be a function. Then
f is said to satisfy the Möbius equation on (M, g) if

Hf + df ⊗ df − 1

n
(
f + g(∇f,∇f ))g = 0

or equivalently,hf +g(·,∇f )∇f − (1/n)(
f +g(∇f,∇f ))id = 0, whereHf andhf are
the Hessian form and tensor off on (M, g), respectively, and∇f and
f (= div∇f ) are the
gradient and Laplacian off on (M, g), respectively. It is easy to show that, iff:(M, g) → R

satisfies the Möbius equation on (M, g) then the functiont = ef satisfies the equation

Ht = 
t

n
g

or equivalently

ht = 
t

n
id

on (M, g). Although this linearization of the Möbius equation is not equivalent to the Möbius
equation globally, they are locally equivalent considering the existence of solutions to these
equations. Hence the equation defined byHt = (
t/n)g for functionst:(M, g) → R may
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be called the local Möbius equation. This equation is extensively studied in Riemannian
and semi-Riemannian geometry in connection with conformal diffeomorphisms and local
warped product decompositions (see[8] and the references therein).

From viewpoint of general relativity, either of the Möbius or local Möbius equation does
not seem to be of interest since physically meaningful functions, such as time functions,
on physically realistic space-times do not satisfy either of these equations. That is why, in
[3], the Möbius equation is modified to be satisfied by certain time functions on physically
realistic space-times to characterize the cosmological time functions by being its solutions.
That is, a time functionf:(M, g) → R on ann-dimensional space-time is said to satisfy the
Möbius equation if

Hf (X, Y )− 1

n− 1
(
f + g(∇f,∇f ))g(X, Y ) = 0 and Hf (Z,X) = 0

or equivalently, [hf − (1/(n− 1))(
f + g(∇f,∇f ))id]X = 0 for everyX, Y ∈ Γ kerf∗,
Z ∈ Γ (kerf∗)⊥. Then again, if a time functionf:(M, g) → R satisfies the above Möbius
equation then the functiont = ef satisfies the local Möbius equation

Ht(X, Y ) = 
t

n− 1
g(X, Y ) and Ht(Z,X) = 0

or equivalently,ht (X) = (
t/(n − 1))X, for everyX, Y ∈ Γ kerf∗, Z ∈ Γ (kerf∗)⊥. It
is also shown in[3] that the time functions on a space-time (M, g) characterized by being
solutions of the Möbius equation yield local Lorentzian warped product decompositions of
(M, g) as in cosmological space-times, provided that the stress-energy tensor of (M, g) is a
fluid “consistent” withf.

Naturally, one may ask whether the Möbius or local Möbius equation can be used to
characterize the functions on a 4-dimensional space-time which yield a local 2 by 2 warped
product decomposition of (M, g) as in Schwarzschild models. Indeed this may be done by
generalizing the local Möbius equation.

Let (M1, g1) and (M2, g2) be semi-Riemannian manifolds with dimensions dimM1 =
n1 > n2 = dimM2 ≥ 1, and letf:(M1, g1) → (M2, g2) be a submersion with semi-
Riemannian fibers in (M1, g1), that is, the fibers are semi-Riemannian submanifolds of (M1,
g1) in the induced structure fromg1. Thenf is said to satisfy the local Möbius equation if

(∇f∗)(X, Y ) = τ(f )

n1 − n2
g(X, Y ) and (∇f∗)(W,X) = 0

for everyX, Y ∈ Γ kerf∗,W ∈ Γ (kerf∗)⊥, where∇f∗ andτ (f) are the second fundamental
form and tension field off, respectively (see for example[5,9] for more about∇f∗ and
τ (f)). In this paper, we deal with a special case of the above definition, that is, we take
(M1, g1) and (M2, g2) to be 4-dimensional space-time (M, g) and the Euclidean space
(R2,

∑2
i=1dxi ⊗ dxi), respectively, where (x1, x2) are the usual coordinates onR

2.
First note that, if (M, g) is a semi-Riemannian manifold andf = (f1, . . . , fm) :

(M, g) → (Rm,
∑m
i=1dxi ⊗ dxi) is a map, then

(∇f∗)(X, Y ) =
m∑
i=1

Hfi (X, Y )
∂

∂xi
◦ f
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for everyX, Y ∈ Γ TM, and hence

τ(f ) =
m∑
i=1

(
fi)
∂

∂xi
◦ f

Proposition 1. Let (M, g) be a 4-dimensional space-time and f = (f1, f2) : (M, g) →
(R2,

∑2
i=1dxi ⊗ dxi) be a submersion with Riemannian fibers in (M, g). If f satisfies the

local Möbius equation on (M, g) then

1. Hfi (X, Y ) = (
fi/2)g(X, Y ) and Hfi (W,X) = 0, or equivalently

hfi (X) = 1
2(
fi)X

for every X, Y ∈ Γ kerf∗,W ∈ Γ (kerf∗)⊥.
2. Hfi (Z,Z) = Hfi (W,W) for every orthonormal Z,W ∈ Γ (kerf∗)⊥.

Proof.

1. Obvious.
2. Let Z, W ∈ Γ (kerf∗)⊥ and X, Y ∈ Γ (kerf∗)⊥ such that{Z,W,X, Y } is a local

orthonormal frame inTM. Then

τ(f ) = g(Z,Z)(∇f∗)(Z,Z)+ g(W,W)(∇f∗)(W,W)
+(∇f∗)(X,X)+ (∇f∗)(Y, Y )

= g(Z,Z)(∇f∗)(Z,Z)+ g(W,W)(∇f∗)(W,W)+ τ(f )
Thusg(Z,Z)(∇f∗)(Z,Z) + g(W,W)(∇f∗)(W,W) = 0 and it follows from (1) and
g(Z,Z) = −g(W,W) thatHfi (Z,Z) = Hfi (W,W). �

Remark 1. Note in the above proposition that (1) is equivalent tof is a solution of the local
Möbius equation.

3. A characterization of Schwarzschild metrics

3.1. Decomposition theorems

A 4-dimensional space-time (M,g) is said to obey the Einstein equation for a stress-energy
tensorT if Ric − (1/2)(Sc)g = T , where Ric and (Sc) are the Ricci tensor and scalar
curvature of (M, g), respectively. A stress-energy tensorT on (M, g) is called a ‘radiation’
if trT = 0, that is, no matter is present. Note that, if (M, g) obeys the Einstein equation for
a radiation stress-energy tensorT then Ric= T .

Now let (M, g) be a 4-dimensional space-time andf:(M, g) → R
2 be a submersion with

Riemannian fibers in (M, g). Suppose (M, g) obeys the Einstein equation for a radiation
stress-energy tensorT given by

T = ρ(−g|(kerf∗)⊥ ⊕ g|(kerf∗))
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whereg|(kerf∗)⊥ andg|(kerf∗) are the restrictions ofg to (kerf∗)⊥ and (kerf∗), respectively,
andρ is a function onM, referred as the negatives of the Faraday stresses ([4], p. 124). Note
that, if ρ = 0, then (M, g) is called vacuum.

Now we are ready to characterize the Schwarzschild metrics by the existence of certain
functions on spacetimes. Note also in the statements of the theorems below that, by a “static
star”, we mean the gravitational field exterior to the celestial body of a “static star” sinceT
is taken to be a radiation stress-energy tensor, as noted before.

Theorem 1. Let (M, g) be a 4-dimensional space-time and f = (f1, f2) : (M, g) →
(R2,

∑2
i=1dxi ⊗ dxi) be a submersion with Riemannian fibers in (M, g). Suppose (M, g)

satisfies the Einstein equation for a stress-energy tensor

T = ρ(−g|(kerf∗)⊥ ⊕ g|(kerf∗))

and f satisfies the local Möbius equation on (M, g).
Then (M, g) is locally a warped product (M1 ×M2, g1 ⊕ ψ2g2), where (M1, g1) is a

Lorentzian surface and (M2, g2) is a Riemannian surface of constant curvature.

Proof. First we show that (kerf∗)⊥ is a totally geodesic distribution. For this, it suffices to
show that∇∇fj∇fi ∈ Γ (kerf∗)⊥ for i, j = 1,2. Now letX ∈ Γ kerf∗. Then

g(∇∇fj∇fi,X) = g(∇X∇fi,∇fj ) = 1
2(
fi)g(X,∇fj ) = 0

and hence∇∇fj∇fi ∈ Γ (kerf∗)⊥ in showing that (kerf∗)⊥ is a totally geodesic distribution
with totally geodesic integral manifolds.

Next we show that the fibers off are totally umbilical and spherical. LetI be the second
fundamental form tensor of the fibers off. Then, since∇f1 and∇f2 are linearly independent
at eachp ∈ M andg(I(X, Y ),∇fi) = −(
fi/2)g(X, Y ) for everyX, Y ∈ Γ kerf∗, it can
be shown with a straightforward computation that

I(X, Y ) = 1

2Q(∇f1,∇f2)
[(g(∇f1,∇f2)
f2 − g(∇f2,∇f2)
f1)∇f1

+(g(∇f1,∇f2)
f1 − g(∇f1,∇f1)
f2)∇f2]g(X, Y )

whereQ(∇f1,∇f2) = g(∇f1,∇f1)g(∇f2,∇f2) − g(∇f1,∇f2)
2. Thus the fibers off

are totally umbilical and their mean curvature vector fieldN is given by

N = 1

Q(∇f1,∇f2)
[(g(∇f1,∇f2)
f2 − g(∇f2,∇f2)
f1)∇f1

+(g(∇f1,∇f2)
f1 − g(∇f1,∇f1)
f2)∇f2].

Now, to show that the fibers off are spherical, we have to show that the mean curvature
vector fieldN is normal parallel. For this, observe from the expression ofN in terms of the
functionsf1 andf2 that, it suffices to show
f1 and
f2 are constant on each fiber off.

Now let Z, W ∈ Γ (kerf∗)⊥ andX, Y ∈ Γ kerf∗ be such that{Z,W,X, Y } is a local
orthonormal frame inTM. Then, since Ric= T

0 = Ric(Y,∇fi) = g(Z,Z)g(R(Z, Y )∇fi, Z)+ g(W,W)g(R(W, Y )∇fi,W)
+g(R(X, Y )∇fi,X).
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Now

R(X, Y )∇fi = ∇X∇Y∇fi − ∇Y∇X∇fi − ∇[X,Y ]∇fi
= 1

2{∇X((
fi)Y )− ∇Y ((
fi)X)− (
fi)[X, Y ]}
= 1

2{X(
fi)Y − Y (
fi)X}
and henceg(R(X, Y )∇fi,X) = −(1/2)Y (
fi).

Also, since (kerf∗)⊥ is a totally geodesic distribution orthogonal to kerf∗

g(R(Z, Y )∇fi, Z) = g(R(∇fi, Z)Z, Y ) = 0

and

g(R(W, Y )∇fi,W) = g(R(∇fi,W)W, Y ) = 0.

Thus 0= Ric(Y,∇fi) = −(1/2)Y (
fi), and it follows that
fi is constant on each fiber
of f. That is, the fibers off are spherical as well. Hence it follows from[14] (proposition
3-d) that (M, g) is locally a warped product (M1 ×M2, g1 ⊕ ψ2g2), where (M1, g1) is a
Lorentzian surface and (M2, g2) is a Riemannian surface. Now we show that each fiber off is
of constant curvature. For this, we compute the Ricci tensor of a fiberM2 of f in its induced
Riemannian structure from (M, g). From[11] (p. 211) (see also[1]), for X, Y ∈ Γ TM2

RicM2(X, Y ) = Ric(X, Y )+
(

ψ

ψ
+ g(∇ψ,∇ψ)

ψ2

)
g(X, Y )

where RicM2 is the Ricci tensor of the induced Riemannian structure of a fiberM2 of f from
(M, g) and,∇ψ and
ψ are the gradient and Laplacian of the warping functionψ in the
induced Lorentzian structure ofM1 from (M, g). Thus, by Ric= T , we obtain

RicM2(X, Y ) =
(
ρ + 
ψ

ψ
+ g(∇ψ,∇ψ)

ψ2

)
g(X, Y ) = Λ

2
g(X, Y )

andΛ is constant on each fiberM2 of f sinceρ and (
ψ/ψ) + (g(∇ψ,∇ψ)/ψ2) are
constant on each fiber off (note here that, since (kerf∗)⊥ is a totally geodesic distribution,
it follows from 0 = (divT )(X) = dρ(X) for everyX ∈ Γ kerf∗ thatρ is constant on each
fiber of f). Thus, each fiber off is of constant curvature in its induced Riemannian structure
from (M, g). �

Note here that, if the fibers off are compact,M can be locally written as a product
M1 × M2, whereM2 is a fiber off andM1 is an open subset of an integral manifold of
(kerf∗)⊥.

Remark 2. Note that the expression(
ψ/ψ) + (g(∇ψ,∇ψ)/ψ2) is equal to−divN in
the above proof. Indeed from[11] (p. 206), sinceN = −∇ψ/ψ , we can compute this
expression in terms ofN. First note that,(g(∇ψ,∇ψ)/ψ2) = g(N,N) and


ψ

ψ
= − 1

ψ
divM1(ψN) = − 1

ψ
[g(∇ψ,N)+ ψdivM1N ] = g(N,N)− divM1N
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alongM1, where divM1N is the divergence ofN in the induced Lorentzian structure ofM1
from (M, g). Also, since the fibers off are totally umbilical

divN = divM1N + g(∇XN,X)+ g(∇YN, Y ) = divM1N − 2g(N,N)

whereX,Y ∈ Γ kerf∗ are orthonormal vector fields alongM2, and it follows that(
ψ/ψ) =
−g(N,N) − divN . That is,(
ψ/ψ) + (g(∇ψ,∇ψ)/ψ2) = −divN . Consequently, we
also obtain(Sc)M2 = 2(� − div N), where(Sc)M2 is the scalar curvature ofM2 in its induced
Riemannian structure from (M, g).

Remark 3. Next we state a theorem to determine the geometry of a Schwarzschild space-
time on the basis of its global analytic structure. Note that in the statement ofTheorem 2,
instead of assuming the existence of the functionϕ, we can assume thatΛ > 0 on M.
Then, since all compact, orientable, constant positive curvature Riemannian surfaces are
homothetic to the standard Euclidean 2-sphere, the conclusion ofTheorem 2remains valid.
Again, instead of assuming the existence of the functionϕ, we can assume the fibers off
are simply connected. Since all simply connected, compact, constant curvature Riemannian
surfaces are homothetic to the standard Euclidean 2-sphere, the conclusion ofTheorem 2
remains valid. The reason we assumed the existence of the functionϕ in the statement of
Theorem 2, is to determine the geometry by imposing conditions on the global analytic
structure of space-time, rather than its geometric or topological structures as in the above
alternative assumptions, respectively.

Theorem 2. Let (M, g) be a 4-dimensional space-time and f = (f1, f2) : (M, g) →
(R2,

∑2
i=1dxi ⊗ dxi) be a submersion with compact Riemannian fibers in (M, g). Suppose

(M, g) satisfies the Einstein equation for a stress-energy tensor T = ρ(−g|(kerf∗)⊥ ⊕
g|(kerf∗)), and f satisfies the local Möbius equation on (M, g). If there exists a function
ϕ:M → R which is not constant on each fiber of f and satisfies the equation


ϕ + 2g(∇ϕ,N)+ 1

Q(∇f1,∇f2)
[(−g(∇f1,∇f1)

2g(∇f2,∇f2)
2

+ 2g(∇f1,∇f1)g(∇f1,∇f2)
2 − g(∇f1,∇f1)

3)Hϕ(∇f1,∇f1)

+ g(∇f1,∇f2)Q(∇f1,∇f2)Hϕ(∇f1,∇f2)+ (−g(∇f2,∇f2)
2g(∇f1,∇f1)

2

+ 2g(∇f2,∇f2)g(∇f1,∇f2)
2 − g(∇f2,∇f2)

3)Hϕ(∇f2,∇f2)] = −Λϕ
where Λ = 2(ρ − divN), Q(∇f1,∇f2) = g(∇f1,∇f1)g(∇f2,∇f2) − g(∇f1,∇f2)

2

and N is the mean curvature vector field of the fibers of f, then (M, g) is locally a warped
product (M1×S2, g1⊕ψ2dσ 2), where (M1, g1) is a Lorentzian surface and (S2, dσ 2) is the
standard Euclidean 2-sphere. Moreover, (M1, g1) can be taken to be of positive curvature in
the above warped product decomposition around a point p ∈ M if (2ρ+g(N,N))(p) ≤ 0.

Proof. Considering the proof of this theorem to be the continuation of the proof ofTheorem 1,
first we show that each fiberM2 of f with the induced Riemannian structure from (M, g) is
homothetic to the standard Euclidean 2-sphere. For this, we employ the functionϕ:M → R

given in the statement of the theorem. First note that, if
M2∇ denotes both the gradient and
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Levi-Civita connection of the induced Riemannian structure of a fiberM2 of f from (M, g),
then, forX ∈ Γ TM2, g(∇M2ϕ|M2, X) = X(ϕ|M2) = Xϕ = g(∇ϕ,X).

Thus, forZ, W ∈ Γ (kerf∗)⊥|M2
andX, Y ∈ Γ TM2, such that{Z,W,X, Y } is a local

orthonormal frame inTM alongM2


M2ϕ|M2 = divM2

M2∇ ϕ|M2 = g(
M2∇ X

M2∇ ϕ|M2, X)+ g(
M2∇ Y

M2∇ ϕ|M2, Y )

= Xg(∇ϕ,X)− g(∇ϕ, M2∇ XX)+ Yg(∇ϕ, Y )− g(∇ϕ, M2∇ Y Y )

= g(∇X∇ϕ,X)+ g(∇ϕ, I(X,X))+ g(∇Y∇ϕ, Y )+ g(∇ϕ, I(Y, Y ))
= 
ϕ − g(Z,Z)g(∇Z∇ϕ,Z)− g(W,W)g(∇W∇ϕ,W)+ 2g(∇ϕ,N)

where
M2 and divM2 are the Laplacian and divergence, respectively, in the induced Rie-
mannian structure ofM2 from (M,g). Now since∇f1 and∇f2 are linearly independent at each
p ∈ M, Z andW can be written as a linear combination of∇f1 and∇f2 alongM2 as follows:

Z = 1

Q(∇f1,∇f2)
[(g(∇f1,∇f1)g(Z,∇f2)− g(∇f1,∇f2)g(Z,∇f1))∇f1

+ (g(∇f2,∇f2)g(Z,∇f1)− g(∇f1,∇f2)g(Z,∇f2))∇f2]

W = 1

Q(∇f1,∇f2)
[(g(∇f1,∇f1)g(W,∇f2)− g(∇f1,∇f2)g(W,∇f1))∇f1

+ (g(∇f2,∇f2)g(W,∇f1)− g(∇f1,∇f2)g(W,∇f2))∇f2]

Then by substituting we obtain the eigenvalue equation


M2ϕ|M2 = −(Sc)M2ϕ|M2

onM2, where(Sc)M2 = ΛM2 = cM2 (constant) and(Sc)M2 is the scalar curvature ofM2 in
the induced Riemannian structure from (M, g) (seeRemark 2).

Also since the eigenvalues of
M2 are well known to be negative for the correspond-
ing non-constant eigenfunctions, it follows thatcM2 > 0. Then a result of Obata ([10],
Theorem 5) predicts thatM2 with the induced Riemannian structure from (M, g) is homoth-
etic to the standard Euclidean 2-sphere (S2, dσ 2) with homothety factor 2/ΛM2. Thus,
by multiplying the warping functionψ2 of the warped product decomposition (M1 ×
M2, g1 ⊕ ψ2g2) with the homothety factor 2/ΛM2 for each fiber off in this decompo-
sition at correspondingp1 ∈ M1, we obtain a local warped product decomposition of (M,
g) as (M1 ×S2, g1 ⊕ ψ̃2 dσ 2), whereψ̃2 = 2ψ2/Λ and (S2, dσ 2) is the standard Euclidean
2-sphere.

Finally we show that (M1, g1) can be taken to be of positive curvature if(2ρ+ g(N,N))
(p) ≤ 0 at somep ∈ M. Now let M1 be an integral manifold of (kerf∗)⊥ passing
throughp and RicM1 be the Ricci tensor ofM1 in the induced Lorentzian structure from
(M, g). Then from[11] (p. 211), for Z, W ∈ Γ TM1, Ric(Z,W) = RicM1(Z,W) −
(2/ψ)Hψ(Z,W), whereψ2 is the warping function andHψ is the Hessian form ofψ
onM1 in its induced Lorentzian structure from (M, g). Now note that, sinceM1 is a surface,
RicM1(Z,W) = K1g(Z,W), whereK1 is its curvature function in its induced Lorentzian
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structure from (M, g). Also, since Ric(Z,W) = T (Z,W) = −ρg(Z,W), it follows that
Hψ is scalar on M1, that is,Hψ(Z,W) = (
ψ/2)g(Z,W). Thus−ρ = K1 − (
ψ/ψ).

Also from[11] (p. 214), since(Sc) = trRic = trT = 0

0 = 2K1 + Λ

ψ2
− 4
ψ

ψ
− 2g(N,N)

and hence,K1 = (Λ/2ψ2) − (2ρ + g(N,N)). Thus, sinceΛ > 0, it follows by the
assumption thatK1 > 0 on an open neighborhood ofp1 ∈ M1 in M1, wherep = (p1, p2).
Then by taking this neighborhood asM1 in the local warped product decomposition, the
claim follows. �

Remark 4. It is important to note that Schwarzschild coordinatesf = (t, r) of the
Schwarzschild solution do not provide an example toTheorem 2since they do not sat-
isfy the local Möbius equation. Yet the Kruskal coordinatesf = (u, v) of this solution is
an example to this theorem since they satisfy the local Möbius equation withτ(f ) �= 0
(that is,f is not harmonic). Yet note thatf = (f1, f2) taken in the statement of the above
theorem need not be completed to a chart onM, even locally.

3.2. Existence of static reference frames

Causal characters of the mean curvature vector fieldN of the fibers off also have impor-
tance from viewpoint of singularity theorems (see[7], p. 226). InTheorem 2, let B be the
open submanifold of (M, g) defined by

B = {p ∈ M; g(N,N)(p) < 0}
Now we show that, ifB �= ∅ then it corresponds to the black/white hole region of a static
star. For, letM2 be a fiber off in B and letU, V ∈ Γ (TM2)

⊥ be null vector fields along
M2 with g(U, V ) = −1. Also, letLU andLV be the shape operators ofM2 with respect to
U andV, respectively. Then sincetrLU = 2g(U,N) andtrLV = 2g(V,N), it follows that
(trLU)(trLV ) = −4g(U,N)g(V,N) = −2g(N,N) > 0, that is,M2 is a closed trapped
surface inB. Hence every fiber off in B is a closed trapped surface homothetic to the
standard Euclidean 2-sphere. Further note that, if (M, g) is vacuum, that is,ρ = 0 onM, the
Lorentzian factor (M1, g1) of the local warped product decomposition ofB is of positive
curvature.

Also let H+ andH− be the subsets of (M, g) defined by

H+ = {p ∈ M;N(p) �= 0 and g(N,N)(p) = 0}
and

H− = {p ∈ M;N(p) �= 0}
Now, if H+ �= ∅ then it corresponds to the event horizon of the black/white hole regionB.
Indeed, ifM2 is a fiber off in H+ andU,V ∈ Γ (TM2)

⊥ are null vector fields alongM2 with
g(U, V ) = −1, then one of them, sayU is a scalar multiple ofN at eachp2 ∈ M2. Thus
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trLU = 0 andtrLV �= 0 onM2. That is,M2 is a marginally trapped surface inH+. Hence
every fiber off in H+ is a marginally trapped surface homothetic to the standard Euclidean
2-sphere. Finally, ifH− �= ∅ then it corresponds to a Cauchy horizon as in Reissner solution
whenr = r− there. Indeed, ifM2 is a fiber off in H− thenM2 is totally geodesic and hence
trLU = 0 = trLV , whereU, V are null vector fields orthogonal toM2 defined as in the
above. Again the fibers off in H− are homothetic to the standard Euclidean 2-sphere.

Next we analyze the regionE of (M, g) which is excluded in the above. That is the open
subset of (M, g) defined by

E = {p ∈ M; g(N,N)(p) > 0}
The fibers off in E are not trapped surfaces. Indeed, ifM2 is a fiber off in E, then for null vector
fieldsU, V ∈ Γ (TM2)

⊥ chosen as in the above, we have(trLU)(trLV ) = −2g(N,N) < 0.
Consequently, we should expect the existence of a static reference frame ([15], p. 219) inE
to consider (M, g) as a space-time describing a static star. To obtain a static reference frame
in E, we impose a further condition onN (in fact, onf).

Let (M, g) be a semi-Riemannian manifold andX be a vector field onM. The ‘affinity
tensor’LX∇ of X is defined by

(LX∇)(U, V ) = LX∇UV − ∇LXUV − ∇ULXV
for everyU, V ∈ Γ TM, whereL is the Lie derivative onM (see[13], p. 109). Also, the
‘tension field’ τ (X) of X is defined to be the trace ofLX∇ with respect tog. A vector
field X on a semi-Riemannian manifold (M, g) is called ‘affine’ ifLX∇ = 0, and is called
‘harmonic-Killing’ if τ(X) = 0 (see[2]). Each of these conditions corresponds to the local
1-parameter group ofX consists of affine or harmonic maps on (M, g), respectively.

Note that, if the regionE in (M, g) is not empty, then (E, g) is a space-time as well.

Lemma 1. In Theorem 2, suppose E �= ∅. Then, g(τ(N), Z) = 0 for Z ∈ Γ (kerf∗)⊥|E
with g(N,Z) = 0 if and only if g((LN∇)(Z,Z), Z) = 0.

Proof. First note that, sinceN is pregeodesic (see the last part ofTheorem 2, that is,Hψ is
scalar),(LN∇)(N,N) = LN∇NN ∼ N . Also letX ∈ Γ (kerf∗)|E with LNX = 0 (note
that, sinceN is pregeodesic,(kerf∗)⊥|E is a totally geodesic distribution andN is the normal
curvature vector field of the fibers off, we can always choose such anX ∈ Γ (kerf∗)|E ).
Then(LN∇)(X,X) = LN∇XX = (Ng(X,X))N + V , whereV ∈ Γ (kerf∗)|E .

Now letN1 = N/(g(N,N)1/2) and letZ1, N1 ∈ Γ (kerf∗)⊥|E andX, Y ∈ Γ (kerf∗)|E
be such that{Z, N1, X, Y} is a local orthonormal frame inTM. Then by the tensoriality of
LN∇

g(τ(N), Z) = g(Z1, Z1)g((LN∇)(Z1, Z1), Z)+ g(N1, N1)g((LN∇)(N1, N1), Z)

+g(X,X)g((LN∇)(X,X), Z)+ g(Y, Y )g((LN∇)(Y, Y ), Z)
= g(Z1, Z1)g((LN∇)(Z1, Z1), Z)

Thus the claim follows. �
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Lemma 2. In Theorem 2,the normal curvature vector field N has the following properties
on B ∪H+ ∪ E.

1. The 1-form ω(·) = g(·, N) is exact.
2. Zg(N,N) = 0 and [N,Z] = ηZ for everyZ ∈ Γ (kerf∗)⊥ with g(Z,Z) = c (constant)

and orthogonal to N, where η is a function on B ∪ H+ ∪ E which is constant on each
fiber of f.

Proof.

1. Note thatω(X) = 0 for everyX ∈ Γ kerf∗ andω(Z) = g(Z,N) = g(Z,−(∇ψ/ψ)) =
−(1/ψ)g(Z,∇ψ) for Z ∈ Γ (kerf∗)⊥. Thusω = d log(1/ψ).

2. Sinceω is exact by (1)

0 = 2dω(N,Z) = Nω(Z)− Zω(N)− ω([N,Z])

= −2g(∇ZN,N)− g([N,Z], N)

= −2g(∇NZ,N)− 2g([Z,N ], N)− g([N,Z], N)

= g(∇ZN,N)− g(∇NZ,N) = 1
2Zg(N,N)

Hence it also follows that [N,Z] = ηZ, whereη is a function onM. Note that, sinceZ
is the lift of its restriction to an integral manifold of(kerf∗)⊥, as well asN, η is constant
on each fiber off (this can also be shown by using the form of the curvature tensor ([11],
p. 210)). �

Theorem 3. In Theorem 2,suppose E �= ∅. If g(τ(N), Z) = 0 for every Z ∈ Γ (kerf∗)⊥|E
orthogonal to N then there exists a unique static reference frame Z1 ∈ Γ (kerf∗)⊥|E orthog-

onal to N. Conversely, if there is a stationary reference frameQ1 ∈ Γ (kerf∗)⊥|E orthogonal

to N then g(τ(N), Z) = 0 for every Z ∈ Γ (kerf∗)⊥|E orthogonal to N and Q1 is a static
reference frame.

Proof. Let Z1 ∈ Γ (kerf∗)⊥|E be a unit time-like vector field orthogonal toN. Then by
Lemma 2, [N,Z1] = ηZ1 for some functionη on E which is constant on each fiber off.
Now we show that there exists a functionλ defined on each sufficiently small open set inE
such that [N, λZ1] = 0 and dλ(Z1) = 0. For, consider the equation

0 = [N, λZ1] = (Nλ)Z1 + λ[N,Z1] = [(Nλ)+ λη]Z1

Hence it suffices to show thatNλ+λη = 0 locally has a solutionλwithZ1λ = 0. First note
that,∇Z1Z1 ∈ Γ (kerf∗)⊥|E is orthogonal toZ1 and, [N, Z1] is orthogonal toN by Lemma 2.
Also byLemma 1, g((LN∇)(Z1, Z1), Z1) = 0, and we have

−Z1η = Z1g(LNZ1, Z1) = g(∇Z1LNZ1, Z1)

= g(LN∇Z1Z1, Z1)− g(∇LNZ1Z1, Z1) = 0

Now for the solutionλ, letγ be an integral curve ofZ1 and letϕt be the local 1-parameter
group ofN. Note that, sinceN is pregeodesic,ϕt ◦ γ is also an integral curve ofZ1 (up to a
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parametrization). Hence the functionλ defined locally byλ(p) = e− ∫ t
0 η◦ϕs(q)ds , whereq

is onγ with ϕt (q) = p, then satisfiesNλ + λη = 0 with Z1λ = 0 and which is constant
on each fiber off. In fact,Z = λZ1 is a Killing vector field. For, it suffices to show that∇Z
is skew-adjoint in(kerf∗)⊥ since∇XZ = 0 for everyX ∈ Γ kerf∗. Indeed

g(∇NZ,Z) = g(∇ZN,Z) = −g(N,∇ZZ)
g(∇NZ,N) = −g(Z,∇NN) = 0

g(∇ZZ,N) = −g(Z,∇ZN) = −g(Z,∇NZ)
g(∇ZZ,Z) = 1

2Zg(Z,Z) = 0

that is,Z is a Killing vector field. Without loss of generality, we may assume thatZ1 =
(1/λ)Z is future-directed and hence, is a stationary reference frame. In fact,Z1 is a static
reference frame, since [N,Z] = 0, there exists a (local) chart (t, r, θ , φ) for (E, g), where
(θ ,φ) is a chart forS2, such thatZ = ∂/∂t andN = ∂/∂r. Thus it follows thatZ = −λ2 ∇t
andZ1 = −λ∇t . Note that the static reference frameZ1 is defined locally. To show that it
can be defined onE, it suffices to show that it is locally unique. LetQ ∈ Γ (kerf∗)⊥|E Killing
vector field orthogonal toN whereZ1 is defined. Hence there exists a functionh such that
Z = hQ. In fact, this function is constant, since

Ng(Z,Z) = (Nh2)g(Q,Q)+ h2Ng(Q,Q) = (Nh2)g(Q,Q)+ 2hg(∇NQ,Z)
= (Nh2)g(Q,Q)− 2hg(N,∇ZQ) = (Nh2)g(Q,Q)− 2g(N,∇ZZ)
= (Nh2)g(Q,Q)+ Ng(Z,Z)

Nh = 0, and since

0 = Zg(Z,Z) = (Zh2)g(Q,Q)+ Zg(Q,Q) = (Zh2)g(Q,Q)

Zh = 0, and it follows thath is constant, because∇XZ = 0 for everyX ∈ Γ kerf∗. Thus
Z1 is locally unique in(kerf∗)⊥|E .

Now, note that the domains of the locally definedZ1 can be chosen as open “rectangles”
which are products of some integral curves ofN, Z1 and fibers off. These domains have the
property that, ifR1,R2,R3 are such rectangles with non-emptyR1 ∩ R2,R1 ∩ R3 and
R2 ∩ R3, thenR1 ∩ R2 ∩ R3 is also a non-empty such rectangle. Thus, it is possible to
define a functioñλ onE such thatZ̃ = λ̃Z1 is a Killing vector field onE. This can be done
by starting with a Killing vector field on a rectangle and extending it nearby intersecting
rectangles by multiplying the Killing vector fields on nearby rectangles with an appropriate
constant. Note here that the resulting static reference frame onE need not be synchronizable
(see[15], p. 53).

Conversely, letQ1 ∈ Γ (kerf∗)⊥|E be a stationary reference frame orthogonal toN andQ
be a corresponding Killing vector field onE. First note thatQ1 is then necessarily a static
reference frame since∇XQ1 = 0 for everyX ∈ Γ (kerf∗)|E . To show thatg(τ(N),Q) = 0,
it suffices to show that [N,Q] = 0. Indeed it follows from

g((LN∇)(Q,Q),Q) = g(LN∇QQ,Q)− g(∇QLNQ,Q)− g(∇LNQQ,Q) = 0
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since∇QQ is orthogonal toQ, thatg(τ(N),Q) = 0 by Lemma 1. To show [N,Q] = 0,
note that

g([N,Q],Q) = g(∇NQ,Q)− g(∇QN,Q) = −g(N,∇QQ)+ (N,∇QQ) = 0

and

g([N,Q], N) = g(∇NQ,N)+ g(∇QN,N) = 0

Hence it follows that [N,Q] = 0. �

Remark 5. The (local) chart (t, r, θ , φ) constructed in the proof ofTheorem 3can be
considered as a “Schwarzschild type” coordinate system onE. Note also that, byLemma 2,
the warping functionψ2 only depends onr in this coordinate system sinceZg(N,N) = 0,
whereZ = ∂/∂t andN = ∂/∂r. Also the induced metric tensor on an integral manifold
M1 of (kerf∗)⊥ can locally be written as

g1 = g

(
∂

∂t
,
∂

∂t

)
dt ⊗ dt ⊕ g

(
∂

∂r
,
∂

∂r

)
dr ⊗ dr

Furthermore, since

∂

∂t
g

(
∂

∂r
,
∂

∂r

)
= 0 = ∂

∂t
g

(
∂

∂t
,
∂

∂t

)
,

g

(
∂

∂t
,
∂

∂t

)

and

g

(
∂

∂r
,
∂

∂r

)

only depend onr in this coordinate system. Also the coordinater is related with the Euclidean
radius of the fibers off. Recall from the proof ofTheorem 2that the Euclidean radius of
a fiber off is given by

√
2/Λ andΛ = 2(ρ − divN) (whereN = ∂/∂r). Now it is easy

to see that divN only depends onr in this coordinate system. Also from 0= (divT )(Z) =
dρ(Z), the negative Faraday stresses only depend onr as well (note here that(divT )(N) =
dρ(N) + 2ρg(N,N), and hence, dρ(N) = 0 if and only if ρ = 0, point-wise onE).
Consequently,

√
2/Λ only depends onr in this coordinate system, and hence,r is locally a

function of
√

2/Λ. As an example, in the Schwarzschild coordinate system (t, r, θ , φ) for
the regionE of the Reissner solution, the normal curvature vector fieldN is given by

N = −∇r
r

= −1

r

(
1 − 2M

r
+ e2

r2

)
∂

∂r

In fact, the coordinater in this coordinate system is nothing but locally scaling the corre-
sponding coordinate in the “Schwarzschild type” coordinate system constructed above, to
make the warping function as simple asψ2(r) = r2 in this coordinate system. Finally note
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that, the normal curvature vector fieldN in the Reissner solution is not harmonic-Killing,
that is,τ(N) �= 0, yetg(τ(N), Z) = 0, whereZ = ∂/∂t .

Remark 6. In [6], a vector fieldN on a semi-Riemannian manifold (M, g) is called ‘weakly
affine’ if g((LN∇)(U, V ), V ) = 0 for everyU, V orthogonal toN. In the caseN is the
mean curvature vector field inTheorem 2, N is weakly affine on the regionE if and only
if g((LN∇)(Z,Z), Z) = 0 for everyZ ∈ Γ (kerf∗)⊥|E orthogonal toN (see[6]). Hence

by Lemma 1, N is weakly affine if and only ifg(τ(N), Z) = 0 for everyZ ∈ Γ (kerf∗)⊥|E
orthogonal toN.
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